姓名 | 彭洁 |
|
性别 | 女 |
政治面貌 | 中共党员 |
民族 | 汉族 |
学历 | 研究生 |
学位 | 博士 |
职称/职务 |
|
办公地点 | 数学楼302 | 办公电话 | 0734-8484934 |
毕业学校 | 湘潭大学 | 通讯地址 | 421002衡阳珠晖区衡花路16号 |
工作及学习经历
2008.09-2012.06,湘潭大学,信息与计算科学,学士
2012.09-2018.06,湘潭大学,数学,博士
2018.09-2021.09,华南师范大学数学科学学院,博士后
2021.09-2024.05,华南师范大学数学科学学院,特聘副研究员
2024.06-至今,衡阳师范学院,教师
个人简历
彭洁,女,博士,衡阳师范学院数学与统计学院教师。主要从事微分方程数值解以及区域分解算法的研究。先后主持了博士后科学基金面上项目、广州市基础与应用基础研究项目以及国家自然科学基金青年项目。已在 Int. J. Numer. Meth.Eng.、Commun.Nonlinear Sci. Numer. Simul.以及Appl. Math. Lett.等国内外重要学术刊物上以第一作者或者通讯作者发表论文 10 余篇。
主讲课程
数值分析、高等数学等
科研论文
1. J. Peng, Y. Xie and L. Zhong. A posteriori error estimate for a WG method of H(curl)-elliptic problems,Journal of Numerical Mathematics, 2024,32(2):157–174.(SCI)
2. J. Zhan, L. Zhong and J. Peng. Iterative two-grid methods for discontinuous Galerkin finite element approximations of semilinear elliptic problem, Advances in Computational Mathematics,2023,49-84 (SCI,通讯作者).
3. J. Zhan, L. Zhong and J. Peng. Discontinuous Galerkin methods for semilinear elliptic boundary value problem. Advances in Applied Mathematics and Mechanics, 2023, 15(2):450-467.(SCI,通讯作者)
4. L. Zhong, D. Qiu and J. Peng. Two-level iterative algorithms for two-dimensional H(curl)-elliptic problem with a symmetry interior penalty discontinuous Galerkin method, Applied Mathematics Letters, 2022, 127: 07821.(SCI,通讯作者)
5. Q. Lu, J. Wang, S. Shu and J. Peng. Two-level overlapping Schwarz methods based on local generalized eigenproblems for Hermitian variational problems, SIAM Journal on Scientific Computing, 2022, 44(2): A605-A635.(SCI)
6. L. Zhong, L. Zhou, C. Liu and J. Peng. Two-grid IPDG discretization scheme for Nonlinear Elliptic PDEs, Communications in Nonlinear Science and Numerical Simulation, 2021, 95: 105587. (SCI,通讯作者)
7. J. Peng, S. Shu, J. Wang and L. Zhong. Adaptive-multilevel BDDC algorithm for three-dimensional plane wave Helmholtz systems, Journal of Computational and Applied Mathematics, 2021, 381: 113011. (SCI)
8. J. Peng, S. Shu, J. Wang and L. Zhong. An adaptive BDDC preconditioner for advection-diffusion problems with a stabilized finite element discretization,Applied Numerical Mathematics, 2021, 165: 184-197. (SCI)
9. J. Peng, J. Wang and S. Shu. Adaptive BDDC algorithms for the system arising from plane wave discretization of Helmholtz equations , International Journal for Numerical Methods in Engineering, 2018, 116(10-11):683-707. (SCI)
10. J. Peng, S. Shu and J. Wang. An adaptive BDDC algorithm in variational form for mortar discretizations , Journal of Computational and Applied Mathematics, 2018, 335: 185-206. (SCI)
11. J. Peng, S. Shu, H. Yu, C. Feng, et al. Error estimates on a finite volume method for diffusion problems with interface on rectangular grids.Applied Mathematics and Computation, 2017, 311:335-352. (SCI)
12. J. Peng, S. Shu, C. Feng and X. Yue. BPX-Like Preconditioned Conjugate Gradient Solvers for Poisson Problem and Their CUDA Implementations. Information Technology and Intelligent Transportation Systems, 2017, 1:633-643.(EI)
13.卢晴, 舒适, 彭洁. 一种变系数扩散问题有限体积格式的高效预条件子. 数值计算与计算机应用, 2018,39(2):150-160.(通讯作者)
14.J. Peng, Y. Xie, Y. Xu and L. Zhong. A weak Galerkin finite element method for a H(curl)-elliptic problem, Advances in Applied Mathematics and Mechanics,accept. (SCI).
主持的科研项目
1. 国家自然科学基金青年项目,12101250,对流扩散问题的高效并行自适应BDDC算法研究,2022.01-2024.12,在研。
2. 广州市基础与应用基础研究项目,202201010644,抛物方程的多水平时空区域分解算法研究,2022.04-2024.03,已结题。
3. 中国博士后科学基金面上项目,2019M652925,高波数问题平面波离散系统的自适应 BDDC 预条件子,2019.06-2021.06,已结题。
4. 湖南省研究生科研创新项目,辐射磁驱动中热扩散问题的高效算法研究,2014.01-2015.01,已结题。